User Tools

Site Tools


Table of Contents

Klippel-Trenaunay-Weber Syndrome

Parkes Weber syndrome, PWS, Klippel-Trenaunay syndrome, KTS, Kasabach-Merritt syndrome, angioosteohypertrophy syndrome, cutaneous capillary malformation, congential vascular nevus, capillary hemangioma, port-wine stain, lymphedema


KTW syndrome, Klippel-Trenaunay syndrome, angio-osteohypertrophy syndrome, naevus vasculosus osteohypertrophicus; Parkes-Weber syndrome is a similar entity involving the presence of an arteriovenous malformation with high-flow vessel malformations and characteristic skin capillary changes, with associated skeletal or soft tissue hypertrophy (also known as haemangiectatic hypertrophy).

See also: Sturge-Weber syndrome

Clinical Features

First described by French physicians Klippel and Trenaunay in 1900, this syndrome is characterized by port-wine stain (capillary hemangioma), varicose veins and bony and soft tissue hypertrophy involving an extremity.

Other features involve lymphedema or lymphatic obstruction, cellulitis, chronic venous insufficiency, stasis dermatitis, poor wound healing, ulceration, thrombosis, and emboli.


Capillary hemangiomas (port-wine stain), stasis dermatitis, thrombophlebitis, cellulitis, limb disparity, and more serious sequelae such as thrombosis, coagulopathy, bleeding, pulmonary embolism, and congestive heart failure. (1), lymphedema is also a consistent complication.

Other indications may include asymmetric face, facial haemangiomas, advanced tooth eruption, macrocephaly, heterotopia, glaucoma, cutaneous pustules/ulcers


Klippel Trenaunay appears to be a non-hereditary syndrome although there is still an ongoing discussion involving this.


Simple diagnosis can be made by observation and examination. Venous and lymphatic complications are diagnosed using radiological tests such as lymphoscintigraphy, ultra-sounds, and MRI. Venograms, and arteriograms may also be used.


Treatment is varied for the different symptoms present. Compression garments are used to control the lymphedema, prophylactic antibiotics are of course, used to treat the cellulitis and lymphangitis spells. Orthopedic procedures are available for the limb hypertrophy and wound treatment is sometimes necessary for ulcerations.

Other treatments for the symptoms or complications include lasers for the hemangiomas, and surgical intervention for the vascular anomalies may be called for.


Klippel-Trenaunay-Weber syndrome


This syndrome is characterised by the presence of the following triad:

  • Port-wine stain (i.e. capillary haemangioma) affecting the skin of a limb
  • Varicose veins in the affected limb (affecting deep and superficial veins)
  • Bony and/or soft tissue hypertrophy in the affected limb.

The affected limb may also have abnormalities of lymphatic channels and drainage along with arterial malformations. Rarely, the condition can affect more than one limb, an internal organ or the head and neck. Blood flow through the capillary abnormalities in KTW syndrome is low velocity, in contrast to Parkes-Weber syndrome where there is a true arteriovenous malformation with high velocity blood flow.

Aetiology and Pathogenesis

This is unknown, though several theories exist. Damage or malformation of the sympathetic ganglia in-utero, damage to deep veins leading to venous hypertension, or mesodermal maldevelopment causing the formation of microscopic arteriovenous communications have all been suggested.1

The condition appears to be sporadic but there are families in whom the condition may be inherited in an autosomal dominant fashion with marked variation in penetrance. An abnormality in a gene locus on the long arm of chromosome 5 appears to be involved.2


This is a rare sporadic condition and there are no available figures for its annual incidence or prevalence in the population.


The characteristic capillary haemangioma will be visible from birth in the vast majority of cases (98% in one series).2

The skin lesion has a characteristic 'port-wine stain' appearance, being deep-purple in colour (in contrast to that of Parkes-Weber syndrome which appears bright red), with clear demarcation from normal skin.

Varicosities and limb hypertrophy are not always present at birth and may take several years to manifest. Abnormal veins and marked varicosities may be present.

Limb hypertrophy may begin by affecting the digits only and cause macrodactyly, syndactyly, polydactyly or oligodactyly.

An increase in limb girth may be the only feature where soft tissues rather than bones are predominantly affected.

Limb-lengthening may present initially as gait disturbance.

If the head is affected then the syndrome may cause macrocephaly and/or mental retardation.

Lymphedema may complicate the condition and contribute to the limb enlargement.

Rarely, the affected limb may show atrophy rather than hypertrophy.

Thrombophlebitis is a common consequence in patients with large venous varicosities.

If the cutaneous haemangioma is large it may cause a consumptive coagulopathy known as Kasabach-Merritt syndrome typified by anaemia, thrombocytopenia, prolonged prothrombin time (PT) and activated partial thromboplastin time (aPTT), reduced fibrinogen levels, and elevation of fibrin degradation products.

Pulmonary or venous thromboembolism may occur rarely as part of the Kasabach-Merritt syndrome.

Other features include:1

  • Spina bifida
  • Hypospadias
  • Hyperhidrosis
  • Hypertrichosis
  • Paraesthesiae
  • Decalcification of affected bones
  • Chronic venous insufficiency
  • Stasis dermatitis
  • Poor wound healing
  • Venous ulceration

Differential Diagnosis

  • Parkes-Weber syndrome (where there is a high-flow arteriovenous malformation rather than capillary haemangioma)
  • Sturge-Weber syndrome (facial port-wine stain, epilepsy and hemiparesis)
  • Maffuci syndrome (rare dysembryoplasia causing cartilage and vessel tumors)
  • Proteus syndrome (rare hamartomatous disorder causing asymmetrical hypertrophy of a range of tissues, possibly afflicting Joseph Merrick, the so-called 'Elephant Man')
  • Congenital lymphatic atresia or obstruction
  • Kaposiform hemangioendothelioma


Imaging of the deep venous systems may be carried out, most often using magnetic resonance imaging in a modern setting. Arteriography or duplex ultrasound scanning may be used to investigate the possibility of an arteriovenous malformation. CT scanning may be used to determine exact limb-length discrepancy as a prelude to any corrective surgery. Lymphoscintigraphy may be used to assess the lymphatic system and the cause of limb-length discrepancy.3


There is no curative therapy and management aims to ameliorate the patient's symptoms and correct the consequences of limb-length discrepancy.

Conservative measures

Graduated compression garments help to reduce the effect of chronic venous insufficiency in the affected limb. Intermittent pneumatic compression pumps may also be used to the same effect.

Cellulitis and thrombophlebitis can be managed with antibiotics, limb elevation, analgesia and corticosteroids. Prophylactic aspirin ± anticoagulants may be used in those who have recurrent thrombophlebitis, or before surgery/during pregnancy.

Women who have the syndrome should avoid the use of hormonal contraceptive methods, due to the increased risk of venous thrombosis.

Pregnant women with KTW syndrome need careful monitoring due to a range of haematological, obstetric and anaesthetic complications.4

Active/surgical measures

Limb-length discrepancy may be treated with orthoses or orthopaedic surgery, depending on its severity.

Laser therapy can be used to lessen the cosmetic effect of the cutaneous stain.

Surgery may be used to treat severe venous malformations but remains controversial as long-term outcomes appear to be altered little by such intervention.

Endovenous laser therapy of the greater saphenous vein appears to help some cases of lower limb varicosity.

De-bulking surgery for grossly enlarged limbs is occasionally used but carries a significant risk of lymphatic and venous damage.

Amputation may be used in cases where the limb is of little functional use and causes severe complications.

Complications Klippel-Trenaunay-Weber Syndrome

  • Psychological problems due to cosmetic appearance
  • Skin bleeding
  • Venous ulceration
  • Chronic venous dermatitis
  • Secondary skin infection
  • Chronic paraesthesiae
  • Pulmonary or venous thromboembolic disease
  • Kasabach-Merritt syndrome (see presentation section above)
  • Thrombophlebitis
  • Cellulitis
  • Scoliosis
  • Gait disturbance
  • Erectile dysfunction in men due to disturbance of venous function5
  • Chronic pain in the affected limb


Life expectancy is largely normal, depending on the severity of the malformation and thus the likelihood of complications. About 10% of patients are affected by pulmonary embolism.3 There may be significant morbidity associated with the condition but most patients do well with conservative therapy and lead relatively normal lives. Amputation is rarely needed.

Document References

1.Lisko J and Fish F, Klippel-Trenaunay-Weber Syndrome, eMedicine (2006). Good overview from dermatology viewpoint. 2.OMIM - Klippel-Trenaunay-Weber Syndrome, 2006 (Genetic detail). 3.Tonsgard J, Klippel-Tranaunay-Weber Syndrome, eMedicine (2006).; Overview from paediatrics viewpoint. 4.Sivaprakasam MJ, Dolak JA; Anesthetic and obstetric considerations in a parturient with Klippel-Trenaunay syndrome. Can J Anaesth. 2006 May;53(5):487-91. [abstract] 5.Agrawal V, Minhas S, Ralph DJ; Venogenic erectile dysfunction in Klippel-Trenaunay syndrome. BJU Int. 2006 Feb;97(2):327-8. [abstract]





A number sign (#) is used with this entry because at least some cases of Klippel-Trenaunay syndrome are caused by mutation in or gain-of-function translocation involving the VG5Q gene (608464).

The features of Klippel-Trenaunay-Weber syndrome are large cutaneous hemangiomata with hypertrophy of the related bones and soft tissues. The disorder resembles, clinically and in its lack of definite genetic basis, Sturge-Weber syndrome (185300), and indeed the 2 have been associated in some cases (Harper, 1971). Suggestions of a genetic 'cause' are meager (Waardenburg, 1963). See 116860. Lindenauer (1965) described brother and sister. He suggested that when arteriovenous fistula is also present, the disorder is distinct from the KTW syndrome and might be called Parkes Weber syndrome, since Weber (1907) described cases of this type as well as cases seemingly identical to those of Klippel and Trenaunay (1900). Lindenauer (1965) also suggested that the deep venous system is atretic in KTW syndrome and, as a corollary, that stripping of varicose veins is unwise. Campistol et al. (1988) described an affected 19-year-old woman who had multiple renal pelvic hemangiomas and renal artery aneurysm. Viljoen (1988) reviewed the clinical features of the syndrome. Lawlor and Charles-Holmes (1988) described a 25-year-old woman with KTW syndrome who had life-threatening menorrhagia due to uterine hemangioma. In an infant with this syndrome, Mor et al. (1988) observed hydrops fetalis (gross edema of the limbs, ascites, and palpable liver). The infant lost 520 gm of weight in the first 6 days of life without medication.

Aelvoet et al. (1992) provided evidence that Klippel-Trenaunay syndrome occasionally shows familial aggregation. In addition, they found isolated vascular nevi to be overrepresented in relatives of KTS patients. Happle (1993) suggested that what he referred to as paradominant inheritance most satisfactorily explains the findings. According to this concept, KTS would be caused by a single gene defect. Heterozygous individuals would be, as a rule, phenotypically normal, and therefore the allele would be transmitted imperceptibly through many generations. The trait would only be expressed when a somatic mutation occurred in the normal allele at an early stage of embryogenesis, giving rise to a clonal population of cells either homozygous or hemizygous for the KTS mutation. One example of a genetic mechanism that might cause homozygosity of a cell population arranged in a mosaic pattern is somatic recombination. Presumably, diffuse involvement of the entire body would not be possible because of nonviability of embryos developing from a homozygous zygote.

Muluk et al. (1995) described the case of a 32-year-old man in whom progressive pulmonary insufficiency was found to be due to repeated pulmonary emboli from the deep venous malformations associated with KTS. Samuel and Spitz (1995) reviewed the clinical features and management of 47 children with KTS treated since 1970. Hemangiomas and soft tissue and/or skeletal hypertrophy were present in all 47 patients; venous varicosities developed in 37 (79%). None had clinical evidence of macrofistulous arteriovenous communications. Thromboembolic episodes occurred in 5 children (11%), and 25 (53%) experienced thrombophlebitis. The Kasabach-Merritt syndrome (141000) was observed in 21 (45%), and 6 (13%) presented with high-output heart failure. Other manifestations included hematuria in 5 (11%), rectal or colonic hemorrhage in 6 (13%), and vaginal, vulval, or penile bleeding in 6 (13%) children with visceral and pelvic hemangiomas. In 26 patients (55%), symptomatic treatment only was required. Surgery was undertaken in selected cases for complications of the hemangioma, for cosmetic reasons, and for chronic venous insufficiency. Only 1 of the 4 children who underwent resection of varicose veins improved.

Whelan et al. (1995) reported the case of a girl with KTW syndrome associated with a reciprocal translocation: t(5;11)(q13.3;p15.1). This raised the possibility that this disorder is due to a single gene defect and that the gene is located on 5q or p11. At birth a capillary hemangioma of the right arm and a vascular anomaly of the left trunk with extension onto the left thigh was noted. At age 3 months, the patient's mother noted that the right second toe was larger than corresponding left toe. Subsequent progression to right leg hypertrophy was noted in the first 5 years of life.

Ceballos-Quintal et al. (1996) reported a family in which a child had large skin hemangiomata, overgrowth of the right leg, and severe heart defects (patent ductus arteriosus (see 607411), atrial septal defect, prolapsed tricuspid valve, and pulmonic stenosis). Her mother had a large capillary hemangioma on the left side of the back and developed severe varicosities in both legs. The maternal grandmother developed severe varicosities of the legs at a young age. The clinical signs in the mother and maternal grandmother were interpreted as mild expression of the KTW syndrome and the family tree was thought to support autosomal dominant inheritance. By ultrasound examination, Christenson et al. (1997) made the prenatal diagnosis of KTW syndrome complicated by early fetal congestive heart failure. The postnatal course was complicated by Kasabach-Merritt syndrome of thrombocytopenia due to platelet consumption within the hemangioma. Neonatal cardiopulmonary resuscitation and limb amputation were required.

Berry et al. (1998) reviewed 49 cases of KTS. All were sporadic. They speculated that the disorder may be due to a somatic mutation for a factor critical to vasculogenesis and angiogenesis in embryonic development. Lorda-Sanchez et al. (1998) presented an epidemiologic analysis of a consecutive series of cases of KTW syndrome identified in the Spanish Collaborative Study of Congenital Malformations. They found an increase in parental age and in the number of pregnancies, as well as familial occurrence of hemangiomas. These observations suggested a genetic contribution to the occurrence of KTW syndrome. Although the effect of increased paternal age on the origin of spontaneous germline mutations is well documented for dominant conditions, sporadic conditions that are presumably caused by somatic mosaicism are not supposed to show advanced parental age. The increased parental age would be consistent with the model of paradominant inheritance. Epidemiologic studies of retinoblastoma, a classic example of the 2-hit model of Knudson, have shown an association of older parental age with the first mutation event in germinal cells in sporadic hereditary retinoblastoma (DerKinderen et al., 1990) but no evidence for risk factors related to the second somatic mutation (Matsunaga et al., 1990).

Sperandeo et al. (2000) described a family in which 1 first cousin had KTW syndrome and the other had Beckwith-Wiedemann syndrome (BWS; 130650). The probands, sons of 2 sisters, showed relaxation of the maternal IGF2 (147470) imprinting, although they inherited different 11p15.5 alleles from their mothers and did not show any chromosome rearrangement. The patient with BWS also displayed hypomethylation of KvDMR1, a maternally methylated CpG island within an intron of the KvLQT1 gene (607542). The unaffected brother of the BWS proband shared the same maternal and paternal 11p15.5 haplotype with his brother, but the KvDMR1 locus was normally methylated. Methylation of the H19 gene (103280) was normal in both the BWS and KTW syndrome probands. Linkage between the IGF2 receptor gene (IGF2R; 147280) and the tissue overgrowth was excluded. These results raised the possibility that a defective modifier or regulatory gene unlinked to 11p15.5 caused a spectrum of epigenetic alterations in the germline or early development of both cousins, ranging from the relaxation of IGF2 imprinting in the KTW syndrome proband to disruption of both the imprinted expression of IGF2 and the imprinted methylation of KvDMR1 in the BWS proband. The data indicated that loss of IGF2 imprinting is not necessarily linked to alteration of methylation at the KvDMR1 or H19 loci and supports the notion that IGF2 overexpression is involved in the etiology of tissue hypertrophy observed in different overgrowth disorders, including KTW syndrome.

Cohen (2000) defined Klippel-Trenaunay syndrome and challenged 4 conceptions frequently found in the literature on this disorder. He considered it improper to add arteriovenous fistulas to the syndrome and on that basis to rename the disorder Klippel-Trenaunay-Weber syndrome. Although Parkes Weber syndrome (as Cohen called it) and Klippel-Trenaunay syndrome are similar, slow flow venous malformations are predominant in KTS, whereas arteriovenous fistulas are always found in Parkes Weber syndrome. Large series of patients with Parkes Weber syndrome were reported by Robertson (1956) and Young (1988). The involved limb is warm. The color of the cutaneous vascular malformation is usually more diffuse and pinker than that observed in KTS. Lymphatic malformations found in KTS do not occur in Parkes Weber syndrome. Cohen (2000) questioned that Sturge-Weber syndrome and KTS are the same disorder. Cohen (2000) considered the affected brother and sister described by Lindenauer (1965) as the only well-documented examples of KTS in a family.

The de novo translocation t(8;14)(q22.3;q13), reported by Timur et al. (2000) and Wang et al. (2001), points to a pair of chromosomes different from those focused on by Whelan et al. (1995) as the possible site of the Klippel-Trenaunay gene. Wang et al. (2001) used FISH to define the breakpoints on 8q22.3 and 14q13 in relation to specific markers and suggested that their study provided the basis for the fine mapping and ultimate cloning of a novel vascular gene at 8q22.3 or 14q13.

Tian et al. (2004) characterized the breakpoint of the translocation in a patient with Klippel-Trenaunay syndrome described by Whelan et al. (1995) and identified the VG5Q gene (608464). The chromosomal translocation results in increased expression of VG5Q in the translocation patient. They also identified 5 of 130 patients with Klippel-Trenaunay syndrome who were heterozygous for an E133K mutation (608464.0001), which also results in a gain of function. Tian et al. (2004) suggested that patients with the VG5Q E133K mutation may carry a second mutational hit in VG5Q or another gene within the affected tissues.

Timur et al. (2004) identified a de novo supernumerary ring chromosome in a patient with mild mental retardation, long tapering fingers, elongated and thin feet, and KTS. The ring marker chromosome was found to be mosaic, present in 24% of cells, and was shown to be derived from chromosome 18, r(18). FISH was used to define the breakpoints involved in formation of the r(18). The 18p breakpoint was located less than 10 cM from the centromere; the 18q breakpoint was located between the centromere and BAC clone 666n19 (GenBank AC036178), representing a region of less than 40 kb. The data suggested that the r(18) mostly originated from 18p, with an estimated size of less than 10 cM.


Brooksaler (1966); Furukawa et al. (1970); Koch (1956); Servelle (1985); Viljoen et al. (1987)


1. Aelvoet, G. E.; Jorens, P. G.; Roelen, L. M. : Genetic aspects of the Klippel-Trenaunay syndrome. Brit. J. Derm. 126: 603-607, 1992. PubMed ID : 1319193 2. Berry, S. A.; Peterson, C.; Mize, W.; Bloom, K.; Zachary, C.; Blasco, P.; Hunter, D. : Klippel-Trenaunay syndrome. Am. J. Med. Genet. 79: 319-326, 1998. PubMed ID : 9781914 3. Brooksaler, F. : The angioosteohypertrophy syndrome (Klippel-Trenaunay-Weber syndrome). Am. J. Dis. Child. 112: 161-164, 1966. PubMed ID : 5943999 4. Campistol, J. M.; Agusti, C.; Torras, A.; Campo, E.; Abad, C.; Revert, L. : Renal hemangioma and renal artery aneurysm in the Klippel-Trenaunay syndrome. J. Urol. 140: 134-136, 1988. PubMed ID : 2837586 5. Ceballos-Quintal, J. M.; Pinto-Escalante, D.; Castillo-Zapata, I. : A new case of Klippel-Trenaunay-Weber (KTW) syndrome: evidence of autosomal dominant inheritance. Am. J. Med. Genet. 63: 426-427, 1996. PubMed ID : 8737646 6. Christenson, L.; Yankowitz, J.; Robinson, R. : Prenatal diagnosis of Klippel-Trenaunay-Weber syndrome as a cause for in utero heart failure and severe postnatal sequelae. Prenatal Diag. 17: 1176-1180, 1997. PubMed ID : 9467816 7. Cohen, M. M., Jr. : Klippel-Trenaunay syndrome. (Editorial) Am. J. Med. Genet. 93: 171-175, 2000. PubMed ID : 10925375 8. DerKinderen, D. J.; Koten, J. W.; Tan, K. E. W. P.; Beemer, F. A.; Van Romunde, L. K. J.; Den Otter, W. : Parental age in sporadic hereditary retinoblastoma. Am. J. Ophthal. 110: 605-609, 1990. PubMed ID : 2248323 9. Furukawa, T.; Igata, A.; Toyokura, Y.; Ikeda, S. : Sturge-Weber and Klippel-Trenaunay syndrome with nevus of Ota and Ito. Arch. Derm. 102: 640-645, 1970. PubMed ID : 5501905 10. Happle, R. : Klippel-Trenaunay syndrome: is it a paradominant trait? (Letter) Brit. J. Derm. 128: 465 only, 1993. PubMed ID : 8388238 11. Harper, P. S. : Sturge-Weber syndrome with Klippel-Trenaunay-Weber syndrome. Birth Defects Orig. Art. Ser. VII(8): 314-317, 1971. 12. Klippel, M.; Trenaunay, P. : Du naevus variqueux osteo-hypertrophique. Arch. Gen. Med. 185: 641-672, 1900. 13. Koch, G. : Zur Klinik, Symptomatologie, Pathogenese und Erbpathologie des Klippel-Trenaunay-Weberschen syndroms. Acta Genet. Med. Gemellol. 5: 326-370, 1956. 14. Lawlor, F.; Charles-Holmes, S. : Uterine haemangioma in Klippel-Trenaunay-Weber syndrome. J. Roy. Soc. Med. 81: 665-666, 1988. 15. Lindenauer, S. M. : The Klippel-Trenaunay syndrome: varicosity, hypertrophy and hemangioma with no arteriovenous fistula. Ann. Surg. 162: 303-314, 1965. PubMed ID : 14327016 16. Lindenauer, S. M. : The Klippel-Trenaunay-Weber syndrome: varicosity, hypertrophy and hemangioma with no arteriovenous fistula. Ann. Surg. 162: 303-314, 1965. PubMed ID : 14327016 17. Lorda-Sanchez, I.; Prieto, L.; Rodriguez-Pinilla, E.; Martinez-Frias, M. L. : Increased parental age and number of pregnancies in Klippel-Trenaunay-Weber syndrome. Ann. Hum. Genet. 62: 235-239, 1998. PubMed ID : 9803268 18. Matsunaga, E.; Minoda, K.; Sasaki, M. S. : Parental age and seasonal variation in the births of children with sporadic retinoblastoma: a mutation-epidemiologic study. Hum. Genet. 84: 155-158, 1990. PubMed ID : 2298450 19. Mor, Z.; Schreyer, P.; Wainraub, Z.; Hayman, E.; Caspi, E. : Nonimmune hydrops fetalis associated with angioosteohypertrophy (Klippel-Trenaunay) syndrome. Am. J. Obstet. Gynec. 159: 1185-1186, 1988. PubMed ID : 2847530 20. Muluk, S. C.; Ginns, L. C.; Semigran, M. J.; Kaufman, J. A.; Gertler, J. P. : Klippel-Trenaunay syndrome with multiple pulmonary emboli: an unusual cause of progressive pulmonary dysfunction. J. Vasc. Surg. 21: 686-690, 1995. PubMed ID : 7707572 21. Robertson, D. J. : Congenital arteriovenous fistulae of the extremities. Ann. Roy. Coll. Surg. Eng. 18: 73-98, 1956. PubMed ID : 13292864 22. Samuel, M.; Spitz, L. : Klippel-Trenaunay syndrome: clinical features, complications and management in children. Brit. J. Surg. 82: 757-761, 1995. PubMed ID : 7542989 23. Servelle, M. : Klippel and Trenaunay's syndrome: 768 operated cases. Ann. Surg. 201: 365-373, 1985. PubMed ID : 2983626 24. Sperandeo, M. P.; Ungaro, P.; Vernucci, M.; Pedone, P. V.; Cerrato, F.; Perone, L.; Casola, S.; Cubellis, M. V.; Bruni, C. B.; Andria, G.; Sebastio, G.; Riccio, A. : Relaxation of insulin-like growth factor 2 imprinting and discordant methylation at KvDMR1 in two first cousins affected by Beckwith-Wiedemann and Klippel-Trenaunay-Weber syndromes. Am. J. Hum. Genet. 66: 841-847, 2000. PubMed ID : 10712200 25. Tian, X.-L.; Kadaba, R.; You, S.-A.; Liu, M.; Timur, A. A.; Yang, L.; Chen, Q.; Szafranski, P.; Rao, S.; Wu, L.; Housman, D. E.; DiCorleto, P. E.; Driscoll, D. J.; Borrow, J.; Wang, Q. : Identification of an angiogenic factor that when mutated causes susceptibility to Klippel-Trenaunay syndrome. Nature 427: 640-645, 2004. PubMed ID : 14961121 26. Timur, A. A.; Driscoll, D. J.; Wang, Q. : A de novo translocation, t(8;14)(q22.3;q13), associated with Klippel-Trenaunay syndrome (KTS). (Abstract) Am. J. Hum. Genet. 67 (Suppl. 2): A2115, 2000. 27. Timur, A. A.; Sadgephour, A.; Graf, M.; Schwartz, S.; Libby, E. D.; Driscoll, D. J.; Wang, Q. : Identification and molecular characterization of a de novo supernumerary ring chromosome 18 in a patient with Klippel-Trenaunay syndrome. Ann. Hum. Genet. 68: 353-361, 2004. PubMed ID : 15225160 28. Viljoen, D.; Saxe, N.; Pearn, J.; Beighton, P. : The cutaneous manifestations of the Klippel-Trenaunay-Weber syndrome. Clin. Exp. Derm. 12: 12-17, 1987. PubMed ID : 2820629 29. Viljoen, D. L. : Klippel-Trenaunay-Weber syndrome (angio-osteohypertrophy syndrome). J. Med. Genet. 25: 250-252, 1988. PubMed ID : 2835482 30. Waardenburg, P. J. : Hypertrophic haemangiectasia (Klippel-Trenaunay-Weber's syndrome).In: Genetics and Ophthalmology. Vol. 2. : :Springfield, Ill.: Charles C Thomas (pub.) 1963. Pp. 1381-1386. 31. Wang, Q.; Timur, A. A.; Szafranski, P.; Sadgephour, A.; Jurecic, V.; Cowell, J.; Baldini, A.; Driscoll, D. J. : Identification and molecular characterization of de novo translocation t(8;14)(q22.3;q13) associated with a vascular and tissue overgrowth syndrome. Cytogenet. Cell Genet. 95: 183-188, 2001. PubMed ID : 12063397 32. Weber, F. P. : Angioma formation in connection with hypertrophy of limbs and hemihypertrophy. Brit. J. Derm. 19: 231-235, 1907. 33. Whelan, A. J.; Watson, M. S.; Porter, F. D.; Steiner, R. D. : Klippel-Trenaunay-Weber syndrome associated with a 5:11 balanced translocation. Am. J. Med. Genet. 59: 492-494, 1995. PubMed ID : 8585570 34. Young, A. E. : Combined vascular malformations.In: Mulliken, J. B.; Young, A. E. (eds.) : Vascular Birthmarks. Hemangiomas and Malformations. Philadelphia: W.B. Saunders 1988. Pp. 246-274. EDIT HISTORY 01/08/2007

Online Mendelian Inheritance in Man

A case of Klippel-Trenaunay-Weber syndrome associated with progressive pulmonary hypertension.

Nov 2011

[Article in Japanese] Tokuda A, Kamioka E, Sasaki A, Nakamura S, Tabeta H.


Department of Respiratory Internal Medicine, Funabashi Municipal Medical Center.

Abstract Klippel-Trenaunay-Weber syndrome (KTWS) is a rare congenital disorder characterized by varicose veins, cutaneous hemangiomas, hypertrophy of soft tissue and bone and arteriovenous malformations. We present a case of a 43-year-old man with KTWS. He experienced progressive pulmonary hypertension due to recurrent pulmonary embolism, which developed despite adequate anticoagulation. This case report suggests that patients with KTWS need more aggressive management and treatment of their thromboembolitic state and pulmonary hypertension.


Lengthening of the normal tibia in a patient with hemihypertrophy caused by Klippel- Trenaunay-Weber syndrome: a case report.

Dec. 2011

Takata M, Watanabe K, Matsubara H, Takato K, Nomura I, Tsuchiya H.


Department of Orthopaedic Surgery, Graduate School of Medical Science, Kanazawa University, Japan.

Key words: external fixators; Ilizarov technique; KlippelTrenaunay-Weber syndrome; leg length inequalit

Abstract We report a case of Klippel-Trenaunay-Weber syndrome in a 31-year-old woman who presented with hypertrophy of the left leg. She had severe osteoarthritic changes in the left hip joint secondary to the lack of acetabular coverage of the femoral head as the result of lateral inclination of the pelvis owing to leg-length discrepancy of 4 cm. The centre-edge angle (coverage ratio of the acetabulum to the femoral head) was improved from 15º to 33º after a foot lift. She underwent osteotomy and lengthening of the normal contralateral tibia using a Taylor spatial frame. Hip arthroplasty could be avoided as osteoarthritic changes of the hip joint had improved.

Journal of Orthopaedic Surgery

Popliteal artery aneurysm in patient with Klippel--Trénaunay--Weber syndrome.

Aug. 2011

Plaza-Martínez Á, Ortiz-Monzón E, Gómez-Palonés FJ, Genovés-Gascó B, Martínez-Perelló I, Martínez-Parreño C.


Angiology, Vascular and Endovascular Surgery Department, Hospital Universitario Doctor Peset, Valencia, Spain.


BACKGROUND: The association of Klippel-Trénaunay-Weber syndrome (KTWS) with artery aneurysms is very rare.


A 61-year-old man, diagnosed with left lower limb KTWS, presented with a venous ulcer and a popliteal aneurysm measuring 3.5 cm in diameter in the same limb. Endovascular treatment with covered stent was applied with good morphological and clinical results.


We report a singular case of the association of a popliteal aneurysm with KTWS and its endovascular treatment. This treatment enabled exclusion of the popliteal artery aneurysm with safety and effectiveness and reduced the number of arteriovenous fistulas.

Annals of Vascular Surgery

Dec. 2010

Dispenza K.

Source Children's Medical Center of Dallas, Dallas, Texas 75235, USA.


Klippel-Trénaunay-Weber Syndrome (KTWS) is characterized by a combination of vascular malformations of the skin, abnormalities of the venous and lymphatic systems, and limb enlargement due to bone and soft tissue hypertrophy. The precise etiology is unknown. There is typically no evidence of arteriovenous shunting. Venous malformations are present at birth, are known to progress as the patient grows, and do not regress. Blood flow through these malformations is sluggish, causing ischemia and thrombotic painful events. Nerve blocks are often used to treat pain that is unrelieved by other pharmacologic and nonpharmacologic measures. In this particular case, a stellate ganglion nerve block was the treatment of choice. The stellate ganglion is part of the sympathetic nervous system made up of the inferior cervical and first thoracic ganglia. The nerve block was performed under fluoroscopy by an anesthesiologist board certified in pediatric pain management. The goal of the block was to relieve the patient's pain by calming painful nerve impulses produced by the stellate ganglion and improving blood flow to the area by vasodilating the vessels distal to the site of the block. The goal of this report was to impress upon health care professionals the effectiveness of nerve blocks in improving and sometimes eliminating a patient's pain, as well as the importance of exhausting all options to alleviate/improve pain in our patients. To protect the privacy of this patient and family, the details of the actual case were revised.

Full Length Article: Pain Management Nursing

External Links

Klippel-Trenaunay-Weber Syndrome

Kasabach-Merritt syndrome

In 1940, Kasabach and Merritt described a male infant with a discolored, indurated lesion on his left thigh that grew rapidly and affected the entire left leg, scrotum, abdomen, and thorax. The infant also had consumptive coagulopathy andthrombocytopenia. This association has become known as Kasabach-Merritt syndrome (KMS) and more recently as the Kasabach-Merritt phenomenon (KMP).

For an overview see:



Neurological picture: A case of cerebral and retinal vascular anomaly in a patient with Klippel-Trenaunay-Weber syndrome.

Lengthening of the normal tibia in a patient with hemihypertrophy caused by Klippel- Trenaunay-Weber syndrome: a case report.

Klippel-Trenaunay and Sturge-Weber overlap syndrome with phakomatosis pigmentovascularis.

Jul 2010

Keywords: Klippel–Trenaunay syndrome, phakomatosis, Sturge–Weber syndrome


Klippel-Trenaunay-Weber Syndrome

Synonyms and related keywords: Parkes Weber syndrome, Klippel-Trenaunay syndrome, KTWS, port-wine stain, varicose veins, bony and soft tissue hypertrophy, arteriovenous malformation


Genetics of Klippel-Trenaunay-Weber Syndrome

Klippel-Trenaunay-Weber Syndrome


Magnetic resonance lymphangiography in Klippel-Trénaunay syndrome

Cystic lymphangioma of the spleen in a patient with Klippel-Trenaunay-Weber syndrome: MRI findings

The Klippel-Trenaunay syndrom associated with multiple visceral arteries aneurysms

Management of urethral hemangiomas associated with Klippel-Trenaunay-Weber syndrome by endoscopic sclerotherapy

The Klippel-Trenaunay-Parkes-Weber syndrome as an example of genetic disorder of angiogenesis

Prenatal sonographic findings of Klippel-Trénaunay-Weber syndrome

Inverse Klippel-Trenaunay syndrome: review of cases showing deficient growth

Klippel-Trenaunay-Weber Syndrome

Yahoo Directory

Yahoo Directory

Klippel – Trenaunay – Weber Syndrome

Klippel - Trenaunay - Weber Support Group

Klippel Trenaunay Weber Syndrome (1)

Ming H Jih MD PhD Dermatology Online Journal 9(4): 31 From the Ronald O. Perelman Department of Dermatology, New York University

Dermatology Online

Klippel-Trenaunay-Weber Syndrome


Klippel-Trenaunay Syndrome

Klippel and Trenaunay's syndrome. 768 operated cases

Exudative enteropathy in Klippel-Trenaunay syndrome

Diagnostic Codes

ICD-9 - Klippel-Trenaunay syndrome 759.89

ICD-10 - Q87.2

Congenital malformation syndromes predominantly involving limbs Syndrome: · Holt-Oram · Klippel-Trénaunay-Weber · nail patella · Rubinstein-Taybi · sirenomelia · thrombocytopenia with absent radius [TAR] · VATER

EUROCAT – Q87.21

EUROCAT is the “European network of population based registries for congenital anomalies” They were founded in 1979, with the goal of improving the collection of data about congenital disorders, and the standardization of that data.

Lymphedema People Internal Links

Lymphedema People Resources

klippel_trenaunay_weber_syndrome.txt · Last modified: 2012/10/16 14:40 (external edit)